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FOREWORD

Efficient management of the Space Shuttle Program dictates
that effective controls of program activities be established. To
provide a basis for program management; requirements, directives,
pProcedures, interface agreements, and information regarding
system capahilities will be documented, baselined, and
sul:sequently controlled by the proper management level,

Program requirements that are to be controlled Ly the NASA
Space Shuttle Program Director (Level I) have been identified and
documented in Level I Program Requirements documentation.

Procram requirements, directives, procedures, etc., controlled by
the NASA Space Shuttle Program Manager (Level II) are documented
within the volumes of this document, JSC 07700. The accompanyino
fiqure identifies the volumes that make up the Level II Progran
Definition and Requirements haseline. Volume I contains overall
descriptions of the contents of the volumes of JSC 07700 and
references Level I Progran Requirements documentation.
Recuirements that are to be controlled by the NASA Project
Managers (Level III) are to be identified, documented, and
controlled at the project level. All elements of the Space
Shuttle Program must adhere to these baselined documents and
wherein it is considered that the requirenents should ke waived,
‘leviated from, or changed; the proper waiver, deviation, or
change request accompanied by a full justification must be
sulmitted to the proper managerment level in accordance with
established procedures. These documents are to be maintained
current by change notices and revisions as required,

This volume of JSC 07700 (Volume XIV) provides the interface
definition Letveen the Space Shuttle Flicht and Ground Syster' and
the payloads. The contents reflect the baseline Space Shuttle
fystem as it is presently configured. It should be clearly
understood by the user that during the early stages of the Space
Shuttle Program, the detail design and configuration of the Space
Shuttle System is subject to change. Until the analyses, design,
development, and tests have heen completed, the contents of this
volume are subject to revision. llowever, as details of the
desion are Laselined, this cdocument will be revised to reflect
firm interface provisions. Questions and recommendations
concerning this volume should be addressed to:

Space Shuttle Program Manager, Code LA
Johnson Space Center
llouston, Texas 770583

J ot 2 g

Robert F. Thompson
Manager, Space Shuttle Program
December 21, 1973
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1.0 INTRODUCTION

This document describes the Space Shuttle system as it
relates to payloads. 1Its purpose is to provide potential users
of the Space Shuttle System with an official source of
information on the planned accommodations for payloads and the
definition of the interface between the payloads and the Space
Shuttle System. By utilizing this information, payload planning
and design studies can be conducted against a controlled set of
accommodations and interface provisions. It describes a baseline
configquration of the Space Shuttle System which is consistent
with current Space Shuttle Program requirements. It includes
performance data and information on subsystems, environment, and
support equipment. It contains those "design to" requirements
for payloads which must be utilized in the payload design and
development in order to be compatible with the Space Shuttle
Systen.

PRPOED:: PAUE ioarit NOT FILMED
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2.0 SPACE SHUTTLE SYSTEM DESCRIPTION AND GENERAL CAPABILITIES

The Shuttle Flight System is composed of the Orbiter,
an External Tank containing the ascent propellants to te
used by the Ortiter main engines, and two Solid Rocket
Boosters (SRB's). The Shuttle Flight System is shown in
Figure 2-1.

The SRB's and the Orbiter main engines fire in
parallel, providing thrust for lift-off. The Orbiter main
engines continue firing until the vehicle reaches the
desired sub-orbital conditions where the External Tank is
jettisoned. The orbital maneuvering subsystem (OMS) is
immediately fired to place the Orbiter in the desired final
orbit. The mission phases representing a typical
operational sequence are illustrated in Figure 2-2. The
Orbiter delivers and retrieves payloads, conducts orbital
operations, and returns to a land base in a manner similar
to that of high-performance aircraft.

The Orbiter shown in Figure 2-1 is a reusable vehicle
designed to operate in orbit for missions up to 7 days
duration. However, the Orbiter is being designed so as not
to preclude missions of longer duration up to 30 days from
being accomplished. The crew and other personnel will te
accommodated in a shirt-sleeve environment in a two-level
pressurized cabin with an airlock that frovides access to
the payload bay and permits extravehicular activity (EVA).
The cabin is being designed for a basic crew of four with
expendables provisioning for 28 mandays. Provisicning
storage capacity is being provided for a total frovisioning
capability of 42 mandays.

The Orbiter crew consists cf the commander and pilot.
Additional crewmen which may be required to conduct
Orbiter/payload operations are a mission specialist and a
Fayload specialist. The duties of the crew are defined as
fcllows:

Ccamander. The commander will be in ccmmand of
the flight and will be responsible for the overall space
vehicle operations, personnel, payload flight operaticns,
and vehicle safety. He will be proficient in all phases of
vehicle flight, payload manipulation, and docking; and, in
subsystem command, control, and monitor operation. He also
will be knowledgeable of payload and payload systems as they
relate to flight operations, communication requirements,
data handling, and vehicle safety.
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t: The pilot will be second in command and
will be equivalent to the commander in proficiency and
kncwledge of the vehicle. He will normally perform the
payload deployment/retrieval operations via the remote
manipulator system and will be the back-up crewman for EVA
operations.

Bission _Specjaljst. The mission specialist is
operationally oriented, and his background/training will be
commensurate with the type of payload flown on specific
missions. He will work with and assist the payload
specialist during payload operations. He is responsitle for
interfacing and management of payload and Orbiter subsysten
operations. He is proficient in vehicle and payload
subsystems, flight operations, and payload communications
data management and will be the prime crewman for EVA
operations.

Paylcad Specjalist. The payload specialist will
be responsible for the applications, technology, and science
payload/instrueents operations. This specialist will have
detailed knowledge of the payload/instruments, operations,
requirements, objectives, and supporting equipment.

The crew size and crew mix will be a function of the
mission complexity and duration. Figure 2-3 gives an
estimate of the crevw size required for typical missions and
Figure 2-4 gives the crew flexibility which can be utilized
in mission planning.

The Orbiter will provide the capability to perfecrm
three, two-man, 4-hour duration EVA's. An airlock is
provided so that depressurization of the crew cabin is not
required to perform EVA. The ncminal EVA equipment uses
water venting to provide persomnnel cooling. Voice
cosmunication between the EVA crewmen and the Orbiter and
the EVA crewmen and the ground is provided by the Orbiter.
Crewman restraints can be located either on the paylocad or
in the Orbiter payload bay as required for optimua
operational capability.

The Orbiter will be capable of rendezvous and retrieval
of a cooperative or passive payload under daylight and
darkness conditions. Exterior lighting and interior
lighting within the payload bay will be provided cn the
Orbiter to aid in these operations and other Orbiter/gayload
orbital operations.



A 15-feet (4.57 m.) diameter by 60-feet (18.29 m.) long
payload envelope is provided with payload attach fittings
and alignment guides, a payload deployment/retrieval
mechanise, and standard interface connectors for
Orbiter/payload services. Interface provisions for paylcad
propulsive stage fill, vent, and drain are also provided.
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3.0 PERFORMANCE

3.1 Reference Missions, The Space Shuttle System is
to provide a general capability for the transportation of a

wide variety of rayloads to and from low earth orbit
altitudes at various inclinations. To accomplish this goal,
reference missions have been selected for design purposes
which are representative of the wide spectrum of anticipated
missions.

The launch technique uses a sub-orbital External Tank
seraration. Reference Missions 1 and 2 would be launched
from the Kennedy Space Center (KSC) with Main Engine Cutoff
(MECO) occuring on a sub-orbital trajectory targeted so that
the External Tank will impact in the Indian Ocean.
Immediately after MECO the Orbiter separates and the ortital
maneuvering sulsystem (OMS) is used to place the Crkiter in
the desired final orbit. Reference Mission 3A and 3B wculd
be launched frcm Vandenberg Air Force Base (VAFB) into a
similar sub-orbital trajectory targeted to impact the
external tank in the Pacific Ocean. MECO conditions from
VAFB are at a lower velocity than from KSC because the
fFotential tank imfpact areas are closer to the launch site.

On-orbit translational delta-V is provided ty the
orktital maneuvering sutsystem (OMS) and the reaction control
subsystem (RCS). The OMS provides the propulsive thrust to
perform orbit circularization, orbit transfer, rendezvous
and deorbit maneuvers. The RCS provides the gropulsive
thrust for three-axis angular control and three axis-
translation of the Orbiter. The Orbiter will have the
capability to use either the parking orbit technique or the
direct ascent technique for rendezvous. In using the
parking orbit technique, all orbit transfer maneuvers
required to establish a terminal approach to the paylcad
will be executed using the OMS. 1In using the direct ascent
technique, the Orbiter is launched into an intercept
trajectory at the same inclination as the target. 1In using
either technique, rendevous traking maneuvers will te
executed with the RCS.

The on-orbit translational delta-V stated for each
reference mission is the delta-V required for the on-ortit
maneuvers dictated ty that mission and includes on-orbit
delta-V reserves and delta-V required for de-orbit. This
delta-V is in excess of that required to achieve the
inserticn orbit and required for cn-orbit and entry attitude
ccntrol.

f
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3.1.1 PReferepce_MNissiop 1. Reference Missicn 1 is a
payload delivery mission to a 150-nautical mile circular

orbit and a rendevous and retrieval of a reusable payload
from a 160 nautical mile circular orbit. The mission will
be launched due east, and requires a payload delivery
capability of 65,000 pounds. The boost phase will provide
insertion intc an orbit with a minimum apogee of 100
nautical miles followed by two OMS maneuvers that establish
a 150 nautical mile circular orbit. Paylcad release and its
transfer maneuver will occur within the first day followed
by approximately five days of on-orbit activities. The
seventh day activities will include rendevous, payload
retrieval, deorbit and landing. The Orbiter on-ortit
translation delta-V requirement is 650 feet per second (fps)
from the OMS and 100 fps from the RCS.

3.1.2 pReferepce Mission 2. Reference Mission 2 is a
combination revisit to an orbital element in a 270-nautical

mile circular orbit at 55 degrees inclination and orkital
experiment operations. The boost phase will provide
insertion into an orbit with a sinisum apcgee of 100 n.m.
folloved by orbit circularization and rendezvous rhasing
initiation for a coelliptic maneuver sequence at the first
apogee. Rendevous, berthing or station keeping, and
refurbishment will occur within the first day, followed by
approximately five days of experiment cperations. The
seventh day activities will include de-orbit and landing.
This mission requires a payload capability of 25,000 pcunds.
The Orbiter cn-orbit translational delta-V requirement is
1,250 fps from the CMS and 120 fps from the RCS.

3.1.3 Referepce Mission 33. Reference Mission 3A is a
payload delivery mission to a 50 by 100-nautical sile orbit
at 104 degrees inclination and return to the launch site in
a single revolution. This mission requires a payload
delivery carpability of 32,000 pounds and a return payload
weight of 2500 pounds. The Orbiter on-orbit translation
delta-V requirement is 250 fps from the OMS and 100 fps from
the RCS. '

3.1.4 pReference Missiop 3B, Reference Mission 3B is a
payload retrieval mission from a 100-nautical mile circular

crbit at 104 degrees inclination and return tc the launch
site in cne revolution. This amission requires a payload
delivery capability of 2500 pounds and a retrieval
capability of 25,000 pounds. The Oorbiter on-ortit
translation delta-V is 425 fps from the ONS and 190 fps froe
the RCS. A typical mission timeline for Reference Mission
32 and 3E is given in Table 3-1.



3.2 Performance_Capabilities, The performance
capabilities of the Space Shuttle System are dependent on

the operational requirements established for each mission.
The type of rendezvous technigue; the payload pointing
requirements; the operational constraints; length of
missicn; orbit transfer requirements; etc., determine the
performance capability for any particular mission. The
performance curves contained in this section represent the
capabilities of the Space Shuttle System for typical sets of
operational requirements. Certain items of equipment,
consumables, etc., which are missjion unique must ke
ccnsidered as part of the total payload, and in planning for
a particular mission must be included as part of the paylcad
weight. In addition, the OMS and RCS are loaded to meet the
specific on-orbit maneuver requirements and not necessarily
to the total lcading capacity.

The Orbiter integral OMS tankage has been sized to
frcvide 1,000 fps delta-V capability to the Orbiter with a
65,000 pound payload. Up to three extra OMS kits can be
installed for increased operational flexibility. =ERach kit
contains one-half as much usable propellant as the integral
OMS tankage resulting in a total propellant capacity 2.5
times that of the integral tankage.

3.2.1 Payload Chargeable Sejight, The payload
chargeable weight is the weight of additional personnel in
excess of a crevw of four, OMS kits, docking mcdule,
additional consumables, and payload support equipment which
are added to the tasic Orbiter for a particular missicn, in
excess of the frasic Orbiter capability. Many of these items
are available in the Space Shuttle hardware inventory but
must ke listed separately in the Orbiter weight summary for
the purpose of weight accounting.

To determine the payload weight for mission planning,
the user should add the weight of his payload with the
selected payload weight chargeable items listed in Table 3-
2. This weight can then be compared to the values given cn
the performance curves to verify the capability of the Space
Shuttle System to perform the desired mission. It should be
noted that the weight of the OMS kits has been included in
these curves,

3.2.2 laynch Azjimuths and Ipclipaticns. The

operational launch azimuths from the two planned launch
sites and the orbital inclinaticns obtainable are shown in
Figure 3-1. The operational constraints for launch azimuths
greater than 201 degrees are under study.



3.2.3 payload Delivery and Retrijeval Performancs.

3.2.3.1 cjircular_orbits. Figures 3-2 and 3-3 show
payload delivery capability as a function of circular

ortital altitude at various inclinations. Figure 3-2 is for
missions launched from KSC and Figure 3-3 is for missiosms
launched from VAFB, Separate plots are needed because of
the different MECC conditions required for the two different
launch sites. Pigure 3-4 is the same data fplotted to Fermit
more accurate determination of payload delivery capatility
for a particular inclination. On this figure, the total CHMS
delta-V identified for each circular orbital altitude is
that required to deliver a paylcad to that altitude and
inclination, and is constant for the particular altitude
curve. This delta-V does not include the ONS delta-V used
between MECO and the reference 50 x 100 nautical mile
insertion altitude. The curves are plotted based on a
launch from KSC fcr inclinations less than 56° and VAFB for
inclinations atove 56°. The RCS gropellant loading is 4,500
pcunds and a 22 fps OMS delta-V reserve is maintained to
correct for dispersions. Figures 3-5 and 3-6 show the same
type of information except that rendezvcus has keen
included. 1In generating this inforsation for the rendezvous
case, the RCS fprogellant loading is 6,300 pounds with a 42
fps OMS delta-V reserve maintained to correct for
dispersions. The RCS total usatle propellant capacity is
TBLC. The performance shown on Figures 3-2 through 3-7 is
based on carrying the entire payload throughout all delta-Vv
paneuvers. This would allow the Orbiter to de-ortit if for
any reason the payload could not or should not be deployed.

3.2.3.2 Elliptical_grbits. Figure 3-8 showus the
payload delivery capability as a function of elliptical

orbital altitude. MECC conditions are the same as for all
KSC launches with the CMS providing the propulsive thrust to
circularize at 100 nautical mile orbital altitude and then
to place the Crbiter into the desired elliptical crbit. The
curve which shcws de-orbit from 100 nautical miles is based
on the Orbiter returning to a 100 nautical mile circular
orbit prior to re-entry. The curve which shows direct de-
orbit is the maximum elliptical orbit achievaltle and assumes
initiation of the de-orbit maneuver at apcgee. This curve
dces not recognize operational limitations such as the
relationshif cf the landing site to the initiation cf the
de-orbit maneuyver or constraints due to thermal protection
system capabilities. Therefore, the elliptical orbit
capability shown by this curve smay te restricted, and these
possible restrictions should be duly considered in mission
rlanning.



3.2.3.3 Syn_synchronous Orbjits., Pigure 3-9 shows the
Fayload weight as a function of sun synchronous orktital

altitude. The s0lid curve is payload delivery only, and the
dashed curve is for payload delivery, including rendezvous.
These curves expand the data shcwn on Figures 3-4 and 3-7
for sun synchronous missions.

3.3 Qp=Crbit Capability.

3.3.1 Navigation_ Acguracy. The expected on~ortit
navigation accuracies using the Spaceflight Tracking and

Data Network (STDN) and the Tracking Data Relay Satellite
System (TDRS) are given in Table 3-3., Por each system the
estimated state errors are given at the end of the last data
tracking pass (i.e., local) and fcr cne revolution later.
The navigation accuracies using the STDN are based on at
least two tracking passes of at least a 5° elevation angle
separated by approximately one revolution. The 1TDRS
navigation accuracies are based on two tracking passes from
a single TDRS.

3.3.2 pointing Accuracy., The Orbiter has the
capability of achieving and maintaining any desired space or
earth referenced attitude for payload pointing purposes
within the thermal attitude constraints defined in Paragraph
3.3.6. Payload pointing is acccmplished Ly accepting data
frcm a paylocad supplied and payload mounted sensor. The
pointing capability for inertial pointing is dependent cn
the error source from the sensor and the Orbiter control
system deadband. For earth pointing an additional errcr,
navigation, has to te included. Sisulaticns hdve been
ccnducted on the Crbiter system for deadbands down to 0.1
degrees/axis. Using a deadband of $0.1 deqgreesaxis and a
payload mounted semsor with an accuracy cf approximately
$0.07 degrees alignment and +0.04 degrees drift/hcur a 3
sigma inertial pointing capability of £0.16 degrees is
ottained. If a sensor of much greater accuracy is used the
Fcinting accuracy will approach that of the deadtand. At
present simulations have not been conducted on deadkands
less than $0.7 degssaxis nor has the effects of structural
deformation teen included such that an absolute minimunm
deadband has nct been determined. Table 3.4 gives the
expected errors fcr pointing at earth targets. The
accuracies given for earth targets looking koth vertical and
30 degrees off the vertical are for pointing at a point on
earth at a specific time and are based cn a $0.1 degree
deadband and a sensor accuracy of +0.07 degrees alignment
and $0.04 degrees drift/hcur.
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3.3.3 Yerpier_RcsS_Fuel Usage for limit Cvcle Conirol.
The Vernier RCS fuel usage for various ortital altitudes and

vehicle orientation modes are presented in Taktle 3.5 for a
per axis deadband of $+0.1 degrees. These consumption rates
include both aerodynamic and gravity gradient tcrques. The
effects of attitude deadband on Vernier RCS fuel usage for
payload pointing in a 100 n.mi. circular ortit are
illustrated in Figure 3.10. For deadbands greater than 0.1
degrees, the majority of the fuel is utilized for countering
the aerodynamic and gravity gradient disturbances. The
values given for deadbands less than 0.1 degree are based on
apalytical predictions using am ideal 1limit cycle and also
include the aerodynamic apd gravity gradient disturlances.

3.3.4 Rotatiopal Mapeuvers. The RCS system is used
for Orbiter rotational maneuvers (e.g. frcm stellar inertial

tc local vertical). The time available tc perform these
maneuvers is based on the particular mission constraints.
Table 3.6 gives the fuel usage for Crbiter sequential three-
axis automatic maneuvers at maneuver rates from 0.2% to 1.0
deg/sec. All maneuvers were 10 degrees in each axis. The
fuel usage is based on using the RCS thrusters because the
angular acceleration of the vernier thrusters is quite
small. The fuel usage, however, would be essentially the
same since the specific impulse and moment ares of the two
systems are ccomparaktle.

3.3.5 Repdezvous. The Ortiter will have the
capability to rendezvous with orbiting payloads that are
either cooperative or passive. In most cases it will use a
multi-orbit and multi-ispulse maneuver sequence associated
with a parking orbit rendezvous mode, but it is alsc cagable
cf performing a rendezvous and retrieval in cone revolution
as depicted by Reference Mission 3B. The rendezvous limits
for cooperative and passive targets are given in Table 3.7.

3.3.6 Attitude Hold Duratiop, The Crbiter thermal
design reference missions are based on the worst case

attitude hold orientation (solar incidence angle, B = 909)
and local vertical mode with either the X or the Y axes
perpendicular to the orbital plane. The orktiter attitude
ccnstraints due to the thermal design are presented in
Figure 3-11.

3.3.7 OQrbist_Atmospheric Drag_Bcceleratiops. On-orkit
acceleration levels resulting fros atmospheric drag cn the

Oorbiter while in a drift mode of operaticn are shcwn in
FPigure 3-12. Ferturbations such as crewv movement, venting,



etc., would affect acceleration levels in this mode of
overation.

3.4 Entry Capability. The preliminary direct reentry
capability of the Orbiter as a function of payload weight
and orbit inclination is shown in Figure 3-13. This fiagure
only presents the direct reentry capability and does not
indicate the launch capability which in some instances is
less than the re-entry capability. This reentry capability
was hased on the thermal protection system (TPS) initial
conditions associated with Reference Mission 3A. By
preconditioning the TPS prior to reentry the direct reentry
capability increases as evidenced by the richt hand curve.

3.5 Return Payload. The Orbiter is beinc designed to
operationally de-orbit and land with a 32,000 pound naxinum
payload weight. Payloads which are to be returned from
orbit should not exceed this value. The Orbiter can under
abort or emergency conditions safely return and land with
payloads in excess of 32,000 pounds with reduced margins of
safety.
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OREITAL ALTITULCE

100_N.¥1. £00_N.M]. 300 _N,MI.
----- DEG=--=-=~
elocal Vertical
eSTLN 0.16 0.16 0.16
*TDES 0.16 0.16 0.16
eFarth Target
eLocking Vertical
eSTDN 0.18 0.16 0.16
*TDRS 0.28 0.20 0.18

eLocking 309 Off Vertical
eSTDN 0.20 0.17 0.16

eTCRS 0.29 0.20 0.18

TABLE 3-4 Paylcad Pointing Errors for Earth Targets
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Orientation Fuel Usage, lbs/orbit
100 n.mi. 200 n.mi. 500 n.mi.
Crbit crbit orbit

I-POP,

2-local Vertical 0.3 0.3 0.3
Y-POP Inertial 3.4 2.3 z.1
Z-POP Inertial 12.8 3.0 2.6
X-POP Inertial 11.0 6 .S

TABPLE 3-5.- EFFECT OF ORBITAL ALTITUDE ON RCS VEENIER FUEL
USAGE FOR PAYLOAD ECINTING WITH VARICUS OREITER
ORIENTATICRNS



Maneuver Rate, Puel, Lbs
Deg/Sec
Roll Pitch Yaw Total
0.25 3.8 8.0 10.5 22.3
0.5 9.0 11.6 15.0 3.6
0.75 13.0 16.0 29.2 8.2
1.0 16.7 26.6 43.4 86.7

TABLE 3-6.- FUEL USAGE FCR OERBITER SEQUENTIAL THREBE-AXIS

AUTOMATIC MANEUVERS AS A FUNCTIGON OF

MANEUVER RATE
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4.0 STROCTURAL/MECHANICAL

4.1 Payload Bay, A 15 feet in diameter by €0 feet
lcng payload envelope is provided. This voluwre is the
maximum allowakle payload dynamic envelope. 1This envelcge
is penetrated by the necessary payload structural
attachments and umbilicals which extend cutside the envelcpe
to interface with the Crbiter. Clearance tetween the
payload envelope and the Orbiter structure is prcvided by
the Orbiter to prevent Orbiter deflection and deployment
interference tetween the Orbiter and the paylcad envelope.
Similarly, the payload must remain within the 15 feet in
diameter by 60 feet long envelope including its deflections.

The Orbiter has the capability of exposing the entire
length and full width of the payload bay doors. With the
payload bay doors and radiators open, the Crbiter provides
an unobstructed 180 degree lateral field of view, excert for
lccalized interference due to the manipulatcr sugports and
the door hinges, for any point alcng the line ¥Y¢ = 0, 2¢ =
427 between Xo = 582 and Xo = 1302. From the mid-point of
the paylcad envelcpe (Xo = 942, Yo = 0, 29 = 400), the
following clearance angles, measured frcm the 2 axis toward
the X axis, are maintained:

To the fcrward bulkhead - 759
To the aft bulkhead - 749
Tc the vertical stabilizer - 570

The coordinate systems established for the Crbiter and
rayloads are shown in Fiqure 4-1 and 4-2.

4.2 Payload Structural Attachments, Payload
structural accommodaticns provides thirteen (13)
attachments, ten (10) which are evenly spaced 59 inches
arart as shown in Figure 4-3. With the exception of the aft
position, each attachment consists of three attachment
Fcints, cne c¢n each longercn (Zo = 414, Yo = $94), and cne
at the keel (Zg = 306, Yo = 0). Each set of three pcints
define a plane normal to the payload bay centerline. The
aft attachment consists of attachment points on the two
lcngerons (Xg = 1293, Yo = 294, 29 = 414) but none at the
keel; this attachment is provided to accommodate the initial
urper stage if required and the future space tug. This
design provides flexibility for acccmmodating a wide
spectrum of paylcads. The fittings along the mid-fuselage
lcngercn are capable of reacting loads in the $X and $2 or
the +? directicns; while the lowver keel fittings react loads
in the tY direction only. A four-point retention concefgt,

. . by dhAas
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as shown in Figure U4-U provides a statically determinate
mounting. Once the Orbiter and payload stiffness
characteristics are defined, further versatility in
retention concepts may be possible. Table #4-1 summarizes
the pavload bay limit load factors. The load carrying
capahility of the support points in each direction is T3D.
Adapters, cradles, or pallets may hbe used to facilitate
mounting of pavload items bhut must be included as payload
weight chargeable items.

Fiqures 4-5, 4-6, and 4-7 illustrate the Orhiter's
longitudinal, vertical and lateral allowable payload c.dq.
envelope.

n.3 Pavload Deployment/Retrieval Mechanism. The
leployment and retrieval of payloads is accomplished by
using the general purpose remote manipulator system (RME)
illustrated in Ficure 4-8,., Table 4-=2 lists some basic
characteristics of the RMS. One manipulator arm is provided
% the Orbiter and mav be mounted on either the left or
richt longeron. If a particular payload requires the use of
twvo manipulator arms, the weight of the second manipulator
arn is a payload weight chargeable iteri. Te manipulator
arm is mounted at station Xo 680 and has a maximum reach
from that point of 52 feet. Figure 4-9 illustrates the
recach capability of the RMS at various vertical stations in
the payload bay. If deployed payloads which remain attached
to the Orbiter require more precise alignment than can be
furnished by the RMS, the necessary devices must be provided
as part of the payload.

2 payload is retrieved in three basic steps: (1)
transmission of commands to the payload for stabilization,
orientation for manipulator attachment, retracting solar
arrays, antenna, etc.; (2) marnipulator engagement,
translation, and securing in the payload bay; and (3)
connection of payload utilities, e.g., caution/warninc,
pover, data, and fluid/gas ventiny when required.

4.4 Airlock and Payload Bav llatch. The airlock is
located on the lower level of the Orbiter cabin and has a
payload hay hatch which is located on the vertical
centerline at Zo = 366 with a U0-inch diameter opening into
the payload hay. Use of the airlock will permit either IV
or transfer to and from a habitable pavload. To accomplish
FVA, approximately four feet of unobstructed payload bhay
lentth is required next to the payload bay hatch such that




the hatch may be opened and a suited crewman can e€gress.
The size of the airlock and associated hatches limits the
external dimensions of packages that can be transferred to
cr from prayloads to 22 x 22 x 50 inches fcr unsuited
orerations and 18 x 18 x 50 inches for pressurized suit
operaticns.

4.5 Docking_Module. The Crbiter may be dccked to
ancther orbital element by using a docking module installed
in the payload bay. This mcdule is attached to the Orkiter
airlock with access provided by the paylcad bay hatch. The
docking mechanism is extended above the Orbiter mcld line to
Fermit engagement tc another orbital element docking
mechanisw. A 40-inch clear diareter passageway is fprovided
through the docking module, either to the payload bay cr to
an attached hatitakle payload. Typical installation is
shown in Fiqures 4-10 and 4-11. EVA is pcssiltle with either
configuration, with access to the exterior thrcugh the
docking interface hatch. The size cbject that can be mcved
tc or frcm the habitable payload by an unsuited crewman is
22 x 22 x 50 inches and 18 x 18 x 50 inches for EVA suited
operations to cr from the paylcad tay.

The docking module is the primary mode for cn-orbit
rescue of the crew from a disabled Orbiter. The docking
module is either carried as part of the payload or is
krcught up and emplaced by the rescue vehicle. The grcund
rules concerning the use of the docking mcdule are currently
under review.



4.6 Seryice_ Fanels. Ground services required ky the
raylcad after installation in the Crbiter such as electrical
power, fluids and gases, filling, venting, draining, etc.,
will be provided through service panels lccated on the
Orktiter and may te independent cf Orbiter systems. The
grcund services required shall be assigned to either the
Pre-flight or Iaunch umbilical panels in accordance with the

fcllowing criteria:

a. Ground services required tc preclude a hazardcus
condition or to safe the payload, in the event a launch
abort is required subsequent to T-30 minutes, shall be
assigned to the Launch umbilical panel (T-0 umkilicals)
lccated at the aft end of the Crbiter.

b. Fluid services compatible with fuels shall te
assigned tc the launch umbilical fuel panel (-Y side of the
orbiter). Fluid services compatible with oxidizers shall be
assigned to the launch umbilical oxidizer fpanel (Y side of
the Orbiter).

c. Grecund services required up to T-30 minutes shall
be assigned tc the Pre-flight panel which is located on the
-Y side of the Crtiter at staticn TED.

Figures 4-12, 4-13, and 4-14 show the launch umkilical fuel,
launch umbilical oxidizer and ground service panels
respectively.

Standardized payload utility services from the Ortiter
suksystems are provided at the payload bay hatch and on the
forward bulkhead of the paylcad bay extericr toc the 40 inch
hatch clearence opening. The interfaces prcvided at the
hatch include redundant caution/warning, data, fpower,
cosmunication, and fluid interface connectors. These
connectors may be engaged or disengaged without EVA when a
fressurized payload is ccnnected tc the payload kay hatch.

Figures 4-15 and 4-16 illustrate the lccaticns of
utilities and their details at station Xg¢ = 576 cn the
foward payload ktay bulkhead. Figures 4-17 and 4-18 show the
lccations of utilities and their details at station Xg =
1307 on the aft payload bay bulkhead.



CONDITICHN* Xo Yo 20

Lift-offass =1.710.6 $0.3 -0.8
-0.2
High @ Bocst 1.9 T $0.2  +0.2
-o.ﬁ
Eccster End Burn <3.010.3 0.2 -0.4
Ortiter End Burn T-3.010.3 $0.2  -0.%
<pace Operaticrs  =0.2  _  20.1 _~ $0.1
+0.1
Entry $0.25 $+0.5 T¥3.0 T
-1.0"
EGEEEnic Maneuvering 10.23 - 16.5 - :3:3 ........
-100
landing and EBraking  #1.5 $1.5 +2.5 __ _
Crash** +9.0 T 31.5 T TT¥y.sTTTTTTTT
-1.5 -2.0

*Positive X, Y, Z directions equal aft, right, and ug.
Lcad factcr carries the sign of the externally
applied 1lcad.

**Crash lcad factors are ultimate and only used to design
paylcad sugport fittings and payload attachment fasteners.
Crash load factors for the rcminal fpaylcad cf 65,000
pounds. Ilongitudinal load factors are directed in the
forward azimuth within 20 degrees of the Crktiter
lcngitudinal axis. The specified locad factors shall
operate serarately.

***These factors include dynamic transient lcad factcrs
at lift-off.
**xx*kThese factors do not include dynamic response of the
payload.

Table 4-1 Fayload Bay Limit ILoad Factors

&
!
n



Operaticnal Mode RMS Characteristics

Payload deployment 32K paylcad ip less than 7
minutes

65K paylcad in less than 10
minutes

Eesidual rates 1.0 - 2.C fps
and 0.15 deg/sec

Op to S payloads/mission

- - - - - - - - - - e — ————

Paylcad retrieval Stakilized paylcads ug to 65K
Stopping distance:

65K paylcad -- 2.5 feet at
a tip speed of 0.2 fps

Unloaded tip speed -- 2.0 fps

Miss distance -- 2 inches

Table 4-2 FRemote Manipulator System (RMS) Characteristics



— 400 IN.

Y - ‘/,A

TYPE: ROTATING, ORBITER REFERENCED

ORIGIN:  APPROXIMATELY 200 INCHES AHEAD OF THE NOSE AND APPROXIMATELY
400 INCHES BELOW THE CENTERLINE OF THE PAYLOAD BAY

ORIENTATION AND LABELING:

THE X AXIS IS PARALLEL TO THE CENTERLINE OF THE PAYLOAD BAY,
NEGATIVE IN TUE DIRECTION OF LAUNCH

THE Z AXIS IS POSITIVE UPWARD IN LANDING ATTITUDE
THE Y COMPLETES THE RIGHT-HANDED SYSTEM
THE STANDARD SUBSCRIPT IS 0

FIGURE 4-1.-~ORBITER COORDINATE SYSTEM
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5.0 AVICNICS

5.1 Gujdance, Navigatjop apd _Control (GNEC). 1The

GNEC subsystem provides: (1) autcmatic and manual control
capability for all mission phases except docking, which is
manual only; (2) gquidance commands that drive control loops
and rrovide steering displays for the crew; and (3) inertial
navigation updated by RF navigation aids and during
rendezvous by a rendevous senscr.

An inertial measurement unit provides the navigation
reference with star sensors for autcnomous alignment. The
Orbiter will prcvide through a standard interface to the
payload the Orbiter state vectcr and attitude, Greenwich
Mean Time, mission elapsed time, clock synchrcnization, and
other data necessary to initialize the paylcad. 1The
attitude informaticn provided will not account for
misalignment Letween the Crbiter reference system and the
payload. The GNEC suksystem will have the cafpatility of
controlling Orbiter attitude by utilizing angle and/cr rate
data supplied by the paylocad. Range rate is derived frcnm
the rendezvcus sensor range data. A star sensor may be used
to track a target light to provide angle data for rendezvous
navigation.

5.2 [Lata_Processing and Software (DPES). 1The CEES
rrovides the cnboard digital computation to support the

Ortiter subsystems and payloads. The hardware elements
which comprise the data processing and scftware suvhsystem
include the cntoard computers, the mass memories, the
adapting input-cutput elements, and the
rultirlexing/desultiplexicg (MDM) units.

Payload checkout is provided at the missicn specialist
staticn via a cathode ray tube display, keybocard,
ccmputaticnal capability (resident in the Ortiter DPES) for
rayload monitoring, and a payload data interleaver. The
Ortiter subsystems provide for software, data processing,
command and control, data acquisition, and display
capabilities required for payload functional end-to-end
checkout and status monitoring through the Paylcad/Ortiter
interfaces while the paylcad is installed in the fpaylcad
bay. A main memory capacity of 10,000 32-bit words and 18 K
equivalent computer adds per second are prcvided to perferm
these functions. The capability to overlay this 10,000 word
segment of memory with programs from Orkiter mass storage is
also provided. The orbiter will be capakle of performing
this checkout, monitor and command at any time after
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liftoff. Payload caution and warning signals will te
displayed to the flight crew and at the MSS.

Cetailed acceptance testing of each payload by the
user is performed by the user prior to installation in the
Orbiter. Checkout of the paylcad fcr prelaunch operaticns
after installation makes use of the ground checkout
equipment and the Crbiter cnboard checkout system for
hardwired uplink commands to the paylocad. A hardwired
downlink to the ground checkout equipment is alsc provided
for checkcut data, which is interleaved with Crbiter
subsysten data.

The physical interfaces tc the payload for inflight
use are via the MDM's. A keyboard at the missicn specialist
staticn gfermits the mission specialist tc ccmmunicate with
the computer, and a cathode ray tuke permits the display cf
payload checkout data to the missicn sgpecialist.

Checkout data are collected frcm the paylcad and sent
to the payload data interleaver. These data cam then be
interleaved with Orbiter downlink telemetry, and either sent
to the ground via the RF link or recorded.

Coaxial cakles and wires are provided between the
paylcad interface and the paylcad specialist station. These
can be used for interfacing payload-provided disglays,
recorders, controls, etc., installed in the console at the
rayload specialist staticn, with payloads. Standardized
interface connectors are provided on these wires. Tinme
codes and synchronization frequencies can be made available
frcm the Orbiter central timing unit, and tramsmitted tc the
Fayload.

5.3 Cgpmynications and_Iracking,

5.3.1 General. The communications and tracking
subsystem is that portion of the avionics system which
provides fcr:

a. Receiving, transmission, and distritution of
voice.

b. Transmission of operational telesmetry.

c. Receiving, processing, and transmission of payload
telemetry.
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d. BReceiving, decoding, generaticn, and transmission
cf commands.

€. Transmission and distribution of television
signals.

f. Tracking cooperative and passive targets
g. Transmission and reception of EVA data and voice

This subsystem provides the interface ketween the
Crtiter anmnd:

a. Tracking and Data Relay Satellite (IDRS) (Relay)
b. Srpace Tracking and Data Network (STCN) (Direct)
C. Attached Paylocads

d. Released Payloads

€. EVA Crewmen

f. Air Traffic Control

g. Other interfacing sutsystess

h. Cther space vehicles

i. Orbiter vehicle landing site facilities

5.3.2 [Fupctional Description, The functional
description of the ccmmunication links prcvided are as

fcllcus:

5.3.2.1 JYoice Commynications, Voice ccammunication is
provided tetween crew stations and manned released paylcads
via RF links, and by interconnecting hardware and RF
circuits to prcvide conference capability. The
coxmunicaticns subsystem will provide voice conference
capability. 7The communications subsystem will prcvide
crevmen access to the fcllowing links fcr vcice
ccsmunicaticn.

a. TDRS (relay) - 1Iwo independent duplex, 32 Kkps
delta modulated digital voice channels when within the
coverage z2ones of TDRS.



(1) TCownlink frequency band, 2200-2300 MHz
(2) UOplink frequency band, 2025-2120 MHZ

b. STLN (Direct) - Two independent duplex, 32 KEps
delta mcdulated digital voice channels vwhen within coverage
zones of STDN ground stations.

(1) TCownlink frequency band, 2200-2300 MHz
(2) Uplink frequency band, 2025-2120 BHz

c. Attached Paylcads - One duplex vcice channel
tetween the Orkiter crew members and perscnnel in a
hatitable paylcad.

d. Released Payloads - Cne duplex voice channel
between the Ortiter crew members and personnel in a manned
released paylcad.
(1) Orbiter to Payload frequency band, 2025-2120 MHzZ
(2) Fayload to Orbiter frequency tand, 2200-2300 MHz

e. EVA - Duplex voice communication with a
conferencing capability for voice conversations Letween two
EVA crewmen, other manned vehicles (Orbiter relay) and
grcund perscnnel (Orbiter relay).

5.3.2.2 Telemetry., The communications subsystem will
transmit orbiter operaticnal telemetry (with interleaved
payload telemetry) and recorded telemetry as indicated for
the fcllcwing links.

a. Qrbiter-to-IDRS_{(Relay)

eS-Band Fhase Modulation

eFrequency Band, 2200-2300 MHz

128 Kbps operational data (including ug to 2% Kbps
of interleaved payload data) time sultiplexed with
tvwo 32 Ktps delta modulated digital voice channel
and convolutionally coded 3:1 fcr a total channel
rate of 576 Kbps.

b. Qrbiter-to-SILN_(Direct PM_lipk)

eS-tand, Phase modulation
eFrequency tamd, 2200-2300 MBz
eTime divisicn multiplex, 192 Kbps serial data
coneisting of:
128 Kbps operational data including up to
25 Kbps of payload data.
eTwo 32 Kbps delta modulated digital voice
channels.

c. Qrbiter to SIDN (Direct FN_link)



eS-tand, Frequency Mcdulaticn
eFrequency band, 2200-2300 MHz
eModulation consisting of cone (at a time) of the
fcllcuing:
*TV video
e1:1 operational PCM telemetry dump - 128 Kbps
eB8:1 operational ECM telemetry dump -
1024 Kbps (max)
e256 Kbps attached payload telemetry or attached
payload wide band data
sPlain engine data (real tiame)

Attached Paylcads-to-Orbjter.

eUp to 2% Kbps of payload status data (bhardline) to
be interleaved with Orbiter operational telemetry.
e0p to 256 Rbps of payload data to te relayed to
the grcund via wideband FM transmitter.

Released_Fayloads-to-Crbjter

eS-band, Fhase Modulation

eFrequency Band, 2200-2300 MHZz

sTLH data as follows:
eManned payloads - up to 48 Kbps serial data
consisting of one 32 Kbps digital voice channel
and 16 Kbps telemetry
eUnmanned payloads - up to 16 Kbps telemetry cnly

5.3.2.3 Commands, The communications sulksystem will

receive,
for the folloving links.

a.

decode, encode, and transmit commands as indicated

IDRS-to-Orbiter (Relay)., The command channel will

consist of a 2.4 Kbps command informsation rate, of which 0.4
Kbgs is allocated to vehicle and subsystem address cverhead.
This 2.4 Kbps command channel is encoded intoc a 6.4 Kbps bit
stream prior tc further processing and sulksequent
transmission over the RF link to the Orbiter. A 1.6 Kktps
synchronization pattern is interleaved with the 6.4 Kkgs
command channel encoded rate providing a total ccsmand rate
cf 8 Kbps
oS~

« The foward link characteristics are as follcwus:
kand phase shift keyed

sFrequency tand, 2025-2120 MHz

eTime division multiplex, 216 Kbps serial data
transmission rate comnsisting of the following data
with 3:1 convolutional code:

eTwo 32 Kbps delta modulated digital vcice channels
eOne 8 Kbps serial data command channel in enccded
fors based vpon a 2.4 Kbps command information
rate.
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b. SIDN-to-Qrbiter_{Diprectl. The ccmmand channel
will ccnsist cf a 2.4 Kbps command information rate, of
which 0.4 Ktps is allccated to vehicle and sulsystem address
overhead. 1This 2.4 Kbps rate is encoded (by the STDN
command encoder) into a 6.4 Kbps bit stream pricr tc further
frocessing and subsequent transwsission over the RF link to
the Orbiter. A 1.6 Kbps synchronizaticn pattern is
interleaved with the 6.4 Kbps encoded rate providing a total
command rate of 8 Kbps. The forward link characteristics
are as follows:

eS-band, Fhase Modulated

eFrequency Band, 2025-2120 MHz

eTime division multiplex, 72 Kbps serial data

consisting of:
eTwo 32 Kbps delta modulated digital voice channels
eOne 8 Kbps serial data command channel in enccded
form based upon a 2.4 Kbgs ccmmand informaticn rate

c. Orbiter to Attached Eaylgads. The command channel
(hardline) will ccpsist of a 2.4 Kbps command infcrmaticn

rate, of which 0.4 Kbps is allccated to vehicle ard

subsystem overhead. This 2.4 Kbps rate is encoded intc a

6.4 Kbps bit stream prior to transmission to the paylcad.

Coamands may te generated either onboard the Crlkiter or

relayed from the grcund. A 1.6 Ebps synchronization pattern .
is interleaved with the 6.4 Kbps encoded rate providing a

total command rate of 8 Kkps.

d. oOrbiter to Beleased Paylgads. The ccmmand channel
will consist of a 2.4 Kbps information rate, cf which 0.4

Kbps is allccated to vehicle and suksystem address overhead.
This 2.4 Kbps rate is encoded into a 6.4 Kips kit streas
prior to transmission to the paylcad. Commands will te
generated onboard. The characteristics cf this link are:
eS-band, Fhase Mcdulation
eFrequency tand, 2025-2120 MHz
eTime divisicn multiplex (TDM) serial data as follows:
e4(0 Kbtps for manned paylcads ccnsisting cf cne
32 Ktps delta modulated digital vcice channel and
cne 8 Kbrs in encoded fors based upon a 2.4 Kbps
ccemand information rate.
e8 Kbps for unmanned paylcads consisting of encoded
command data and synchronization.

5.3.2.4 Dopplegr_Trackipg,; The communications
subsystewm will prcvide for extraction of one-way Loppler
ontoard the Crbiter and for extraction of two-way Doppler at

STDN (either direct or via TDRS).
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5.3.2.5 Jelevision apd _¥Widebapd Exreripent _Data, The
communicaticns subsystem will provide the capatility to

transmit TV video or wideband experiment data to STDN ground
stations via a link time-shared with wideband payload data.
For analog data, the paylcad shall grovide ccemutation and
subcarrier cscillators coepatible with the Orbiter wideband
transmitter. PFor digital data, the payload shall perfcra
the required encoding at a bit rate compatible with the
capabilities of the Ortiter wideband transmitter.

5.3.2.6 laynch Readipessg Checkoyt, Prcvisions will
be made for both RF radiation and hardlimne (uskilical)

interfaces between the Ortiter communications subsystem and
launch facilities for prelaunch voice communications,
telemetry, commands, TV, and wideband data.

5.3.2.7 fayload_Tracking, The Crkiter will have an
onbocard capability of tracking a cooperative target during
the last phasing, the coelliptic, and TPI maneuver. The
capability will also be provided tc track passive targets
displaced up tc 19 kilcmeters.
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6.0 ELECTRICAL POWER

Electrical power for paylocads is provided by the
Orbiter hydrogens/oxygen fuel cell pcwer plants and will
supply 1 kw average and 1.5 kv peak for payloads during all
mission rhases. During most of the orbital operations, the
Orbiter has the capability to provide a maximum of 5 kw
average and 8 kw peak power to the payload. <Cryogenic
stcrage volume and weight for 50 kwh cf electrical energy
for paylods is being provided. Any additional paylcad
energy requirements will pecessitate additional ccnsumatles,
their tankage and additional plumbing which will te
chargeable tc payload weight. Such a system is teing
studied for possible availability in kit form which when
installed would nct interfere with the payload tay clear
volume envelope. The electrical pcwer characteristics at
the paylcad interface will be as follows:

Power: 28 VDC nceinal, two wire, structure ground
(Fayload must not use structure for DC return)

Steady-state limits: 23-32.C VDC intermittent duty
24-32.0 ¥VDC continuous duty

Riprle vcltage: 1 V peak-to-peak

o~
oS
.
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7.0 ORBITAL MANEUVERING ANC REACTICN CONTROL

7.1 Orbital Banecuyvering Suybsysicm (CHS). The OMS
provides the rropulsive thrust to perform final injection

into orbit, ortit circularizaticmn, crbit transfer,
rendezvous, and de-orbit. The Orbiter integral GMS tankage
is sized to provide propellant capacity fcr an cn-orbit
delta-V of 1,000 fps with a 65,000 pound paylcad on a
missicn froms KSC into a 28.5 degree inclinaticn., Provisicos
are made to allow additional tankage capacity to te
incorporated tc achieve an overall propellant capacity of
2.5 times that of the integral tankage for increased
operational flexibility. The additional capacity is
provided by three self-contained fressurant/propellant
supply kits which will be located in the aft portion of the
15 feet diameter x 60 feet long payload bay clear volume and
will be a payload weight chargeable item. The auxiliary
tankage kit will te designed so that either cne, twc, or
three sets cf progrellant and helius tanks can be installed
as required by a particular mission. Figure 7-1 shows the
installaticn cf these kits in the payload tay.

. 7.2 Reactjon _Control Subsystem (RCS), The ECS employs
bipropellant thrusters operating at a rated vacuum thrust of
900 pcunds tc provide attitude control and three-axis
translational carability. Figure 7-2 illustrates the RCS
Flume profiles ccntaining 95 percent of the exhaust
products. Figure 7-3 illustrates the bifropellant flow
exhaust cone for one of the RCS nozzles. Vernier thrusters
operating at a rated vacuum thrust cf 25 pcunds have been
inccrrorated tc provide increased attitude hcld capability.
Figqure 7-4 illustrates the vernier thruster plume profiles
containing 95% of the exhaust products.

The Orkiter does not include a concept for RCS kits
which could be included for additional capability. The
Frcpellant is stored in two separate tank systems, one
forvard and one aft with no fore to aft interccnnect. Fach
tank system is sized for 1TBD pcunds (presently estimated to
be 3600 pounds although RCS tank sizing is under study).
The aft tankage system consists of tanks located cn either
side of the Orbiter and has a side-to-side interconnect of
the OMS/RCS prcpellant storage systems. This interconnect
time shares the OMS crossconnects thereby increasing cverall
system flexibility. The RCS propellant available for
payload operations is as described in Section 3.3. Vernier
thruster gpropellant is stored in the forward tanks.

coot T HLARE



Specific impulse of the RCS thrusters and the Vernier
thrusters is 289 and 232 seconds respectively.
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8.0 ENVIRCNMENTAI CCNTEOL ANLC LIFEF SUEEORT

Envircnmental control and 1life support (ECLS) will
include expendables storage capacity for a 42-manday mission
(7 days duraticn) withcut modification to the Ortiter.
However, the Crtiter is being designed so as not to preclude
missions of long duration ug tc 30 days fros Lkeing
accomplished. A normal mission includes four men fcr 7 days
(28 mandays) and the weight of expendables in excess of
these 28 mandays must be charged to the payload. Up to a
total of 7 perscnnel can be accommodated for shorter
duration missions. A1l perscnnel in excess of four and
provisioning for personnel in excess of fcur will be fpaylcad
weight chargeaktle items.

8.1 Atmospheric_Fevitalization Subsystep (ABS). The
ARS design will furnish a two-gas 14.7 psia shirt-sleeve

envircnment ty ccntrolling CO2, humidity, odor, pressure,
oxygen/nitrogen atmosphere, and temperature fcr the catin,
cabin-located equipment, and hakitaktle paylcads.

The Orbiter will gprcvide atmospheric revitalizaticn of

a hakitakle paylcad by circulation cf 48 CFM cf ccnditioned
cakin air to suppcrt up to four personnel working in the
payload. Assuming perfect mixing, the resulting atmosphere
in a habitable payload is shcwn in Figure 8-1, 8-2, and 8-3.
Figure 8-1 shows the relationship of the fpaylcad CC2 partial
Eressure with the CC2 production rate. The steady state CC2
partial gpressvre in the habitable payload will be the
partial rressure which results from the CC2 entering with
the ccnditicned air, which is expected to Le Letween 1.0 and

.S mm Hg; plus that generated in the paylocad. PFigure 8-2
shcws the relationship between the paylcad atmosphere water
vapor partial pressure and the total latent rate in the
payload. The steady state water vapor partial pressure of
the ccnditicned air in the payload will te the sum of that
generated in the payload plus that contained in the air
entering the paylcad. The dewpoint temperature of the air
entering the fpayload nominally will range ketween 45°F and
50°FP with a maximum of 559F. Figure 8-3 showe the quantity
of heat that the entering cconditioned air can remcve frce
the paylcad atmosphere and the resulting temperature rise of
the air. 7The temperature of the air entering the payload
will range between 459F and 659F and will normally ke less
than 559F. It shculd be noted that the temperatures cf the
payload atmosghere and the return air to the Crtiter cabin
are the same.



8.2 Pood, Nater. and Waste Mapagepedt Sulsystenm. The
food management section consiste of a galley area for fccd

preparation, fcod and eguipment storage, hot and cold water
dispensers, and waste storage.

The water management section stores, distributes, and
disposes of excess potable water and collects and stores
waste water. Fotable water is stored in three tanks, e€ach
having a capacity of 100 pounds. When the potakle storage
tanks are fully charged, the system pressure will rise to 20
fFsi above cabin pressure. With continued fuel cell product
vater flow, the tanks will teccme full and ccntrolled
disposal is accomplished by the water sublimatcr cr dumged
cverboard through heated nozzles depending on the
operational ccnstraints. For emergency, the water will te
dumped over-bcard through two heated nozzles. Waste water
condensate from the humidity ccntrol heat exchanger is
stored in three tanks, each of 165-pcund capacity and ncramsal
operating fpressure of 14.7 psia.

The waste managesment secticn accumulates sclid wvaste
and collects, transfers, and stores liquid wastes. OUrine
and urinal rinse are collected, separated from air, and
stored for return tc earth.

The waste management system shall be usakle ty male or
female crev memkers. Fersonnel hygienic facilities
including waste and trash storage shall be frcvided.

8.3 pctive Thermal Ccpirol Sulsystem (AJCS). The ATCS
provides heat tramsport, equipment thermal control, and heat

rejection for all mission phases, including ground
cperations.

The ATCS provides equipment fcr ccntroclled circulation
of liquid Freon 21 tetween various thersal sources and sinks
located outside the hatitable Orbiter crew ccspartsent. The
ATCS also provides active thermal control of the fpaylcad.
The paylcad thermal control locp will interface with the
Orbiter ATCS through a heat exchanger located in the Crtiter
and dedicated to support the payload in the payload tay. The
temperature of the coclant that is prcvided tc the paylcad
is determined by using the informatiom shcwn in Fiqure 8-4.
The payload will be responsible fcr providing the payload
heat trapsport thermal control hardware to interface with
the Orbiter AICS interface heat exchanger. The average
active heat rejection capacity dedicated to payloads will be
as followe:



Nominal, 3400 Btu/hour
Feak, 5200 Btu/hour

During ortital operations, when Crbiter electrical
Fower requirements dc not exceed 8 kv, the heat rejecticn
capacity for payload usage may be increased tc as much as:

Ncminal, 11,250 Btu/hr
Feak, 21,500 Btu/hr

Space radiators are the primary heat sink during
orkital operations. The radiators are stowed teneath the
payload tay doors during launch and re-entry. During mcst
orkital operations, the radiators are norsally deplcyed to
allcw an uncbstructed 180 degrees lateral field of view for
the payload at the upper surface of the payload Lay docor
frame. No Orbiter attitude restrictions or water koiling
are currently required by the radiators in order to reject
raximum anticipated heat 1loads.
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Figure 8-4 Habitable Payload Coolant Inlet Temperature
To ke supplied later.
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9.0 CEEW EROVISICNS

9.1 Crey_Compartmsent, The Orbiter crev compartsent
consists of a two-level cabin, as shown in Piqure 9-1. The
upper level (flight section) is dedicated to flight and
payload orerations. The commander and pilot flight ccntrol
staticns and on-orkit stations for docking and payload
handling, the missicn specialist station, and the payload
specialist station are lccated on the upper level as shcwun
in Fiqures 9-2 and 9-3. The arrangement of the payload
handling station, mission specialist station, and paylcad
specialist station is such that all three can ke manned
simultaneously for limited time periods when required. The
off-duty habitability area and additional crew prcvisicns
are lccated cn the lower level (midsection).

9.2 Mission Specialist Statijop. 1The missico
specialist station provides the necessary means fcr managing
Orkiter/raylcad interfaces and supporting operaticn of
active payloads.

This staticn provides the capability to command,
control, mcnitor, and communicate with attached or detached
payloads. Voice communication is provided with the grcund
and with other crewman stations. Payload data reccrders can
be contrclled to play tack data fcr transmission. 1The
capability to manage payload specialist station vcice, TV,
and telemetry data transmission will be provided. The
staticn configuration will include provisions for the
missicn specialist to man the station for short or extended
time reriods and whenever the payload specialist station is
manned.

9.3 Payload Specialjst Staticp., The paylcad
specialist station has standard racks for the installaticn

of rpayload-supplied displays and controls. A minimum cf 20
square feet of panel space has Leen reserved for paylcad
unique displays and controls. Figure 9-4 shows the general
arrangement of the avaliatle panel space. A minisum cf 30%
of the panel area reserved has a clearance in depth of at
least 20 inches. Standard electrical interfaces for paylcad
command, contrcl, scnitor, and checkout will ke available.
In addition, there will be provisions for closed circuit 7V,
Fayload data disgplay and recording, and communicaticns with
attached or detached paylcads and ground. Voice
communicaticn will be provided with the ground and other
crev stations. Fayload visibility is availakle to the

e o Baua. . -
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payload specialist by access to the payload handling station
windows and television monitors. Electrical power will be
provided to this station through standard connectors.
Payload supplied equipment requiring heat removal must be
provided with forced air coocling capability. The
configuraticn will include provisions for the station to ke
pmanned for short duration or extended periods at approrriate
times.

9.4 payload Handlipg Statigp., The paylcad bandling
station is used to control payload degloyment, rayload
retrieval, docking, and other related activities. Direct
visibility for this on-orktit station is prcvided ty over-
head and aft-facing windows. The limits cf the line cf
direct visibility from the paylcad handling staticn of the
paylcad bay, withcut a payload and without a docking mcdule
are shown in Pigure 9-5. This station has, in addition tc
permitting direct visibility, a closed circuit TV systes.

IV cameras, lccated near the terminator of each manipulator
arm, provide visibility sc that final clcsure and attachment
may be accurately controlled. Other TV cameras are mcunted
in the payload tay and provide remote viewing of the paylcad
attachment and release and stowage cperaticns as well as
general viewing of the entire area. Another 1V camera is
used within the docking module and mounted on the centerline
of the docking axis at the payload handling station window
to aid manipulator-controlled dccking operaticns. Tuc
television monitors are provided in the right-hand panel cf
the paylcad handling station, near the paylcad specialist
staticn.
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PRBOBDING PACLE U..in ws FILMED

10.0 INCUCED ENVIEONMENT

10.1 Y¥Vjikratijon, Calculated random vibration levels
for the mid-fuselage section of the Orbiter are shown in
Figqure 10-1. These data are based on scaled data and does
nct include rayload input impedance effects.

10.2 Agcoustic, Figures 10-2 and 10-3 give the
analytical predictions of the Orbiter paylcad bay internal
acoustic envircnment and acoustic sgectra resgectively, and
are based on the current midfuselage and paylcad tay docr
design studies. These predicticns will te progressively
refined and uvltimately confirmed during future tests.

10.3 Shock. 1This section will be provided later.

10.4 Ppayload Bay Atmosphere. The Orbiter paylcad bay
can be atmospheric controlled independent cf cther parts of

the Orbiter structure while on the launch pad. Ccnditicned
air purge will be supplied to the payload tay at the launch
pad up to 30 miputes prior to propellant locading. At that
time, GN2 will be supplied up tc lift-cff. The purge
capability at the Orbiter discopnect interface at the launch
uskilical panel is as follows:

a. Flow rate - 0 to 200 lbs/min.

b. Temperature - adjustable within the range from 45
degrees F to 120 degrees F ccntrolled to ¢+ 2 degrees ¥ of
desired setting.

c. Class 100,000, See Federal Standard 209A - Clean
Rocm and Wcrk Station Requirements, Controlled Environment.

d. Air humidity - 0 to 43 grains/pound of dry air.
€. GN2 huwmidity - 0 to 1 grain/pound of dry air.
Figure 10-4 shows the payload bay purge confiquration.

The Orbiter payload bay is vented during the launch and
entry phases and crerates ungressurized during the ortital
Fhase of the missicn. Figure 10-5 defines the payload tay
fressure history during ascent and Fiqure 10-6 gives paylcad
bay reenty pressure history. Operaticnal characteristics of
the paylcad tay vent system are defined in Pigure 10-7. The
payload must provide the tankage and gases to accomplish

10-1 Lq,% L e



paylcad bay repressurization if an inert atmosphere is
required for entry.

10.€ Jhersal Enyiropmept and Copirol. The
determinaticn cf payload temperature and temperature

environments which the payload will actually experience inp
the payload bay requires knowledge of the specific mission
environment frcm toost through entry, the tyre cf thersal
control provided ty the Orbiter and the paylcad, and the
rayload bay and payload thermal characteristics. Tc chtain
this informaticn requires detailed knowledge of the actual
Oortiter and payload design, as well as the specific inflight
orientations which prokably will vary fcr each different
missicn cbjective. As Orbiter payload bay and payload
thermal criteria are currently envisioned, the follcwing
design requirements have been imposed on the Crktiter thersmal
design.

The internal wall temperature limits fcxr the payload
tay, not considering paylcad heat addition or remcval will
remain within the ranges noted in Table 10-1.

If the payload bay temperature limits are inadequate,
provisions fcr limited active thermal control of the paylcad
are available from the Crbiter as discussed in Section 8.3.
The paylcad will be responsible for its own passive and/or
active thermal control in excess of the prescrited thermal
ccntrol capacity available from the Orbiter.

Since a total energy allowance of 50 kwh is provided by
the Orbiter electrical fpower systes fcr payload support
during a mission, a portion of this power can be utilized
for active heater thermal contrcl.

Thrcughout cn-orbit operations, the radiator/payload
docrs will ncreally remain open for radiator heat rejecticn
to space. The payload will therefcre be exposed to the
space environment and must provide for its cwn passive
and/or active thermal control in excess of the prescribed
thermal contrcl available from the Orbiter.

10.6 Electromagpetic Compatibility. This secticn will
be provided at a later date.

10.7 Coptamipation, Particulate contamination levels
in the payload tay will be maintained below Class 100,000.
To meet these requirements, the following ccnstraints have
been established for the payload area:

10-2



a. The Orbiter will be designed to minisize the
generation, introduction, and accusulation of contaminants
vhich may interfere with payload storage or operation.

b. Materials used on the exterior of the vebhicle and
in the payload tay will be selected for low outgassing
properties.

Cc. Particulate satter in and arcund the flight systenm,
toth cn-crbit and during ground operation will tLe
ccntrclled.

d. On-ortit dumping of excess potable water will te
controlled as descriked inm Section 8.2

10-3



DESIGN CESIGR

CONLCITICN MINIMUMN MAXINUN
Prelaunch + U4OOF + 120¢9F
Launch + 4OOF + 150°F
On-orbit (doors closed) See CEC See AEE
Epntry and postlanding - 100° F + 200°F

Heat leak criteria into or out of a 1009F ccnstant paylcad
are as followus:

A. Total bay heat gain, average < 0 Btu/ftZ-bhr
B. Heat gain, local area < 3 Btusft2-hr
C. Total bay heat loss, averagqe < 3 Btu/ft2-br
D. Heat loss, local area < 4§ Ptusft2-hr

Table 10-1 Paylcad Bay Wall Thersal Environment

10-4
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- ANALYTICAL PREDICTIONS OF THE ORBITER

GURE 10-3.
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This page reserved for Figure 10-6.
To be supplied at a later date
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Figure 10-7 To be supplied at a later date
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11.0 SAFETY, RELIABILITY, ANL QUALITY ASSUFANCE

The Space Shuttle System will contain some tasic safety
capabilities ipherent in its design. In addition, it will
have dedicated safety equipment to insure the safety of the
Ortiter and its flight crew. Safety design features include
abort capability, caution and warning subeysteam, vent
frovisions, and dry nitrogen inerting purge pricr tc launch.
Specific csafety equipment and capabilities abcard the
Orkiter are TBL.

Commensurate with the Space Shuttle Program (SSP)
okjective of fproviding a low ccst sgpace transportation
system, the SSF requires that paylcad suppliers meet NASA
safety requirements, tut the SSP has no responsibility for
Fayload performance. Fayload performance is the
responsibility of the payload supplier. There will ke no
independent SSE imposed reliability and quality assurance
requirements.

The paylcad suppliers are fully responsible toc KASA for
the fcllcving safety requirements:

a. The determination of the hazardcus aspects of the
payload and the implementation of required corrective
Beasures.,

b. Assurance of the compatibility of the paylocad with
Space Shuttle System interfaces.

c. Indentification of residual hazards and interface
incompatibilities prior tc paylcad summary reviews and
insgecticn.

Preflight summary reviews and inspections of paylcads
will be conducted with participation by the payload

suppliers to verify that NASA csafety requirements have Leen
met.

11-1
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12.0 KSC SPACE SHUTTLE SYSTEM GROUND OPERATIONS

A typical Space Shuttle System ground flow is shown in
Figure 12-1. Figure 12-2 shows the typical flovw time for
the Orbiter during its turnaround time and the times during
the flow for payload installation and removal.

After the Orbiter has landed, preliminary securing
operations including the connection of the mobile ground
cooling unit, crew egress, and establishment of ground
communication prior to towing the Orbiter to the Orbiter
Maintenance Facility (OMF) where safing tests will be
performed. The OMP is an environmentally controlled
facility that will be maintained at a Class 100,000
environment. Upon arrival of the Orbiter at the safing and
deservicing cell of the OMF, postlanding safing activities
will begin with deactivation of hazardous ordnance,
propulsion, and electrical (fuel cell tanks and APU)
systems. In addition, electrical ground pover and
environmental equipment will be connected to the Ortiter.

After the completion of the safing activities, the
payload bay doors will be opened, access equigpment
installed, and the paylcad removed. At the conclusion of
the maintenance activities, the payload will be installed in
the Orbiter bay which had been previsouly cleaned to a
visibly clean level (Level-TBD). Figure 12-3 shows the
current horizontal payload installation concept. Prior to
the payload bay doors being closed, an Orbiter integrated
test will be conducted to verify the interfaces between the
payload and the Orbiter. The payload bay environment with
the doors closed will be maintained by providing a facility
purge of Class (TBD) air at (TBD)® F temperature and (TBD)
percent relative humidity. The payload will not normally be
accessible after closure of the payload bay doors until the
entire stack is mated at the launch pad except through the
Orbiter cabin.

Upon completion of the OMF activities, the Orbiter will
be towed to the VAB for transition from the horizcntal to
the vertical position. Premate activities will be
accomplished to prepare hoisting the Orbiter to be mated
with the external tank and solid rocket boosters. When
mating of the shuttle elements on the mobile launch platform
(MLP) are complete in the VAB, the facility will provide a
purge of Class (TBD) air at (TBD) © F temperature and (TBD)
percent relative humidity to the payload bay.

12-1 %f““j.." " 9/
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Following the completion of mating and Orbiter
interface verification checks with the mobile launcher
platform, the stack will be rolled out on the crawler
transporter to the pad while maintaining the Class (TBD) air
purge to the paylocad bay. After the MLP has been mated to
the pad, and umbilicals connected, an interface verification
test will be run to verify the integrity and serviceability
of the Pad/Shuttle System interfaces. An abbreviated
avionics overall test will be performed pricr to hygergolic
and related pneumatic subsystems servicing.

In the event that the payload must be installed in the
Oorbiter in a vertical position at the Pad, the payload will
be directly transported to the Pad and installed in the
payload bay. Figure 12-4 shows the current vertical payload
installation concept. During this operation, the Orbkiter
will be enclosed by an environmentally controlled payload
change-ocut room. The payload bay will be purged with Class
(TBD) air at (TBD) © F temperature and (TBD) fpercent
relative humidity during the installation of the paylcad in
the Orbiter. A payload can be removed from the Orbiter on
the launch pad and a new payload installed within a time
period of ten hours up to T-2 hours. Environmental control
requirements will be met during the exchange.

After the Shuttle Flight System and payload interfaces
have been connected and verified at the launch pad, a launch
readiness checkout followed by prelaunch servicing and
preparation, propellant loading, crew ingress, final
countdown, and launch will be conducted.

The capability for payload checkout and component
replacement in the vertical position will be possible
through the Orbiter payload bay doors and through the
Orbiter crewv compartment/payload bay hatch. Access to,
removal of, and loading of payload items on the pad must be
‘accomplished no later than TBD hours prior to launch.
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AM
ARS
ATICS
Btu
c.g. or CG
co2
db
Delta-V or
ECLS
EVA
FN
fgs

g

GNZ
GN&EC
Hz

K
Kbaud
KbEs
KSC
km

kv
kwh
lbs
LH2
LiCH
LO2
MDM
MECO
.}:¥/
N.MI or n.mi
OMS
PCHM
FLH
PLH
ECE
Esi
gsia
q or Q
RCS
RF
RMS
RSS
SRE
SSP

APPENCIX A

ABBREVIATIONS ANL ACRCNYNS

Amplitude Modulation

Atmospheric Revitalization Suksystes
Active Thermal Ccntrol Suksysten
British Thermal Unit

Center of Gravity

Carton Dioxide

Decibel

Velocity Change in Feet per Second
Envircnmental Contrcl and Life Suggert
Extravehicular Activity
Frequency Mcdulaticn

Feet per Second

Acceleration Due to Gravity
Gaseous Nitrogen

Guidance, Navigaticn and Ccntrol
Hertz (Cycles)

1,000

Code elements fper seccnd in 1,000's
Bits per Second in 1,000's
Kennedy Space Center

Kilometers

Kilowatt

Kilcwatt Hours

Founds

Liquid Hydrcgen

Lithius Hydroxide

Liquid Oxygen
Multiplexer-Demultiplexerx

Main Engine Cut-Off

Megahertz

Nautical Miles :
Crtital Maneuvering Subsystea
Fulse Code MNodulation

Paylcad Handling

Payload Management

Perpendicular tc Orbit Elane
Pcunds per Square Inch

Pcunds per Square Inch Absolute
Aerodynamic Pressure

Reaction Control Subsystenm

Radio Pregquency

Remote Manipulator System

Root Sum Square

Solid Rocket Bocster

Space Shuttle Program



STDN
TED
TLRS
TV
VAFB
vDC
VHE

Space Tracking and Data Network
To Be Determined

Tracking and LCata Relay Satellite
Television

Vandenberg Air Force Ease

Vclts Direct Current

Very High Freguency
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Airlock -

Berthing -

Beta Angle -

Cauticn -

Ccoperative Target -

Dead Band -

Docking Module -

Emergency -

APPENDIX B
GICSSAFY

A ccapartment, carpable cf keing
depressurized without defressur-
ization of the cakin, used to
transfer crewman and equipment.

The use of the remote manipulator
system to softly bring tcgether an
orbital element and the Crbiter.

The minimum angle tetween the earth-
sun line and the plane of the orbit.

Any out-of-limit ccnditicn or
malfunction of a system that
affects primary missicn cbjectives
or could result in loss of a systenm
if not resgcnded to in time. Crew
action is required, although nct
immediately.

A cooperative target (payload) is a
three axis stabilized crtital
€lement which has enhanced electro-
magnetic reflection or signal
characteristics.

That positive or negative value cf
attitude error in any tkody axis
beyond which the attitude thrusters
are activated when the rate error
is zerc.

A module which allcows fositive
interception, engagesent and
release of the orbiter vehicle with
ancther crbiter vehicle cr other
orbital elements containing 1like
docking mechanisas.

Any condition which can result in
crevw injury or threat to life and
Iequires immediate corrective
action, including predetermined
crev response.



Extravehicular
Activity -

Hatitable Payload -

Inclipnaticn -

Intravehicular
Activity -

Launch Pad -

Launch Processing
Syster (LES) -

‘Manned Spacecraft
Operation Fuilding
(MSOB) -

Mcbile Launch
Platfora -

Crewman activities conducted cut-
side the spacecraft gressure hvull
or within the paylcad bay when the
payload doors are open.

A payload with a pressurized com-
partment suitable for supporting a
crevman in a shirtsleeve
environment.

The maximum angle between the fplane
cf the orbit and the equatcrial
Flane.

Crewman activities inside the space-
craft, within a payload module
carried in the payload bay, cr
within the paylcad kay when the
doors are closed. The term 1IVA

is dependent ugon where the

activity is perfcrmed and is
independent of local atmospheric
Fressure.

The pad area frcs which the Sgace
Shuttle will be launched. The
stacked Space Shuttle will undergo
final prelaunch checkcut and ccunt-
down at the launch rpad.

A high speed digital ccmputer
operated checkout system used to
support test, checkout, launch
control and operational management
of launch site grcund cperaticns at
KSC.

This is the building at KSC that
has been used for vehicle checkout
in the vacuur chamters and checkout
prior to transfer to the VAB fcr
stacking. It is ccmmonly called
the 0&C (Operaticns and Checkout)
building.

The elements of the Space Shuttle
will te stacked upon the mobile
launch platfors while in the
VYehicle Assembly Building (VAB).
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Multiple Payloads -

~

Orbiter
Checkcut Facility -

Passive Target -

Payload -

Payload Carrier -

Paylbad Changeout
Roce -

Payload Supplier -

Reference Missions -

After stacking, it will ke rolled
cut tc the launch gad.

More than cne separate paylcad
carried in the cargo tay.

This is a building at KSC with two
high bays in which the Orbiter is
rolled in and ocut cn its tires and
underqoes gpost flight inspecticn,
maintenance, premate checkout prior
to integration with the cther
€lements and pcssible paylcad
installaticn.

A passive target (payload) is a
three axis stabilized crktital
€lement which is detected, acquired
and tracked by means cf electro-
magnetic energy reflected frce the
skin of the target.

Any paylocad carrier, exgeriment
equipment, sensors, and subsysteans
which are contained within the
Crkiter 15 x 60 fcct cargo tay.

Fefers tc major classes of standard
Fayload carriers certified fcr use
with the Space Shuttle tc ottain
low cost payload operatiocns. The
rayload carriers are identified as
habitable modules (Space lak), and
attached but uninhabitakle mcdules
(pallet, free flyer, satellites,
and propulsive stages).

This is an envircnmentally
controlled white room clamped
arcund the paylcad bay. It is
installed either in the maintenance
and checkout facility or launch pad
depending uron where the payload is
installed.

Cvnexrsoperator of any Space Shuttle
rayload.

Missicn prcfiles tc ke used in



Retrieval -

Stability Rate -

STLN -

TDRS -

Vehicle Asseskly
Building (VAB) -

conjunction with other sgecific
systems requirements to size the
Space Shuttle vehicle.

Is herein intended tc mean thcse
operations associated with the
grappling and maneuvering cf the
target vehicle into the Crbiter
payload tay.

The maximsus anqular rate errcr
during steady state limit cycle
operation.

Is the Spaceflight Tracking and
Data Network. It generally means

a number of ground based systems
(stations) having direct communi-
cations with NASA flight vehicles.
Although technically inccrrect, as
used in this document, generally
includes point-to-point circuits
(NASCOM) between the remcte sites
(stations) and the Missicn Ccntrcl
Center. Also, as herein used, dges
pot include TDRSS, althcugh GSFC
intends that TDRSS beccme a gart of -
STDN when operational.

Is the Tracking and Cata Relay
Satellite to be used tky RASA for
communications Lketween the flight
vehicle and ground. As is,
includes only the satellites, of
which there are two (2) active
glanned, located at gecsynchrcnous
altitude, and separated in
longitude by about 120°. When used
with a seccnd “s%, (i.e. - TDESS),
it includes the ground systes
required tc work with the satel-
lites, (i.e. - Tracking and Data
Felay Satellite Systenm).

This is the tuilding at KSC that
bas four high bays that is used for
vertical storage of the external
tanks and to stack the Shuttle
elements onto the motile launch
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Warning -

platfcre. This begins with scliad
rocket motor buildup on the sotile
launcher, installation of the ex-
ternal tank, turning the orbiter to
the vertical positico and tying it
to the stack and ends in integrated
checkout cf the cospleted Space
Shuttle,

Any existing or impending conditicn
or malfunction of a system that
would adversely affect crew safety
cr comgromise primary smission
objectives. 1Immediate action Lty
the crew is required.
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APPENDIX C

Payload Accommodations Baseline Drawings

The drawings contained in this appendix represent the
current Space Shuttle System baseline relating to Payload
Accommodations. These drawings have not been placed under
formal Level II control and therefore are subject to change
without notification.

Drawing Number Payload Accommodations
VL70-003267 Forward Fuselage Provisions
4105 Envelope/Retention & Loading
4145 Payload Handling and Viewing
4146 Mid-Fuselage System Interface
4150 Ground Handling Provisions
5126 Aft Fuselage Provisions
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